Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 163: 112269, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596180

RESUMO

Three of nineteen Araucaria tree species from around the world produce large edible seeds. While composition is established for edible pinhão and piñones nuts from Brazil and Chile, respectively, the first detailed characterisation for the composition of edible Araucaria bidwillii (bunya nut) from Australia is provided. Almost half of the kernel weight is moisture and the main component in the dried kernel is starch. Whilst low in protein and fat, it contains all essential amino acids and half the fatty acids are polyunsaturated (Omega-3 and 6). Bunya nuts are a source of dietary fibre, folate and minerals (Cu, Mn, Fe, Mg), while the nut husks and inner coating are high in phenolics, mainly catechin. The composition supports the Traditional Knowledge of Aboriginal Australians that the bunya nut is an energy dense and nutrient rich food. Similarities in the composition among the three different edible varieties were found, which should assist in developing sustainable value chain propositions via shared knowledge on processing and utilisation.


Assuntos
Araucaria , Nozes , Humanos , Nozes/química , Araucaria araucana , Austrália , Sementes/química
2.
Nat Prod Res ; 37(14): 2466-2471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35707900

RESUMO

Furofuran lignanes show important biological activities for the treatment of infectious diseases, inflammatory and metabolic pathologies. They have been isolated from leaves and barks of many plants. In Chile the native conifer Araucaria araucana produces eudesmin, matairesinol, secoisolariciresinol and lariciresinol in stemwood, branchwood and knotwood. These compounds were previously isolated by laborious flash chromatography on silica gel. Here we report the easy isolation of eudesmin by soxhlet extraction from milled knots of Araucaria araucana with hexane, followed by cryo-crystallization at -20 °C. Upon bromination of the isolated eudesmin epimerization at one benzylic position occurs, giving epieudesmin and the corresponding mono and di-brominated derivatives. The structures were determined by 1D, 2D NMR and X-ray diffraction. The analysis of products against Candida yeast showed that eudesmin has a moderate activity against different strains of Candida from 62.5 to 500 µg/mL. This activity decreases for epieudesmin, while bromine derivatives are not active.


Assuntos
Araucaria araucana , Bromo , Candida , Halogenação
3.
Tree Physiol ; 43(2): 248-261, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36209429

RESUMO

Stored water in inner tissues influences the plant water economy, which might be particularly relevant for trees facing increasing dry conditions due to climate change. We studied the water storage in the inner bark and the sapwood of Araucaria araucana (Molina) K. Koch. This species has an extremely thick inner bark and thus it can be used as a model system to assess the impact of internal water storage on plant water balance. Specifically, we analyzed the water circulation pathways in and out of the elastic water storages by using simultaneously frequency domain moisture sensors and dendrometers inserted in the inner bark and in the sapwood, and sap flow determinations during the dry season. The daily patterns of water content and expansion and contraction of the stem tissues were similar to the sap flow pattern. The whole-stem water content and diameter increased in the morning and decreased in the afternoon, contrary to the typical pattern observed in most tree species. An osmotic gradient favoring the water influx from sapwood to inner bark was observed in the morning. There were no lags in the onset of sap flow between different stem heights at the time that recharge of reservoirs occurred. Sap flow at 6 m height was higher than basal sap flow in the afternoon, when the sapwood water content started to decline followed by the water content of the inner bark. Inner bark and sapwood contributed 5-11% to total daily transpiration, allowing the maintenance of high water potentials in the dry season. Our results suggest that the stored water in the stems, the atypical dynamic of recharge and discharge of water from reservoirs and the high tissue capacitance may make an important contribution to the survival of A. araucana during drought periods by maintaining the water balance.


Assuntos
Araucaria araucana , Água , Água/metabolismo , Secas , Casca de Planta/metabolismo , Transpiração Vegetal , Ritmo Circadiano , Árvores/metabolismo , Caules de Planta/metabolismo
4.
J Ethnopharmacol ; 298: 115651, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998784

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Since pre-Columbian era, the resin of Araucaria araucana tree has been used traditionally for the treatment of ulcers and wounds. Araucaria species have also been used to treat inflammation, respiratory problems, viral infections, ulcers, and rheumatoid, cardiovascular, and neurological disorders. AIMS AND OBJECTIVE: Due to its popular use, the authors aimed to scrutinize the potential of this plant as an antispasmodic and an antiemetic agent. Furthermore broncho- and vasodilatory effects of this plant was explored to rationalize its folkloric uses. MATERIALS AND METHODS: Araucaria araucana crude extract (Aa.Cr) was evaluated in isolated preparations of rabbit jejunum, trachea, aorta, and atria to investigate the antispasmodic, bronchodilator, and vasodilator effects. The potential mechanistic approaches were compared with the standard drug 'verapamil'. The antiemetic activity was determined and compared with the standard drug 'domperidone' via chick emesis model. RESULTS: Aa.Cr dose-dependently relaxed both spontaneous and K+-induced contractions in the isolated jejunum preparations of rabbits. In concentration-response curves of calcium (Ca++), Aa.Cr also triggered the rightward shift like verapamil. Applying carbachol and phenylephrine (1 µM) and K+ (80 mM) to the isolated tracheal and aortic tissue preparation, respectively, resulted in broncho- and vasodilatory activities, respectively which may be due to the inhibition of Ca++ channels. Aa.Cr inhibited atrial force and spontaneous contractions in the rabbit's right atria. Aa.Cr exhibited significant antiemetic activity (P < 0.001 vs. saline) in dose-dependent (50-150 mg/kg) manner like domperidone. In silico molecular docking was performed to investigate the biological targets of purified components of Aa.Cr which revealed that cadinol dominantly targets ß2 receptors to cause bronchodilation, however, eudesmin binds non-specifically to all the selected targets, while secoisolariciresinol mediated high hydrogen bonding with muscarinic receptors (M1 and M3) and Ca++ channels, thus shows the suggested mechanistic pathways of targeted activities. CONCLUSIONS: The results of this study indicates that Aa.Cr may exhibit antispasmodic activity, bronchodilation, and vasodilation by inhibiting voltage-dependent Ca++ channels and release of subcellular calcium. This explains its folkloric use in hypertension, bronchospasms, gastrointestinal spasms, and emesis.


Assuntos
Antieméticos , Parassimpatolíticos , Animais , Antieméticos/farmacologia , Araucaria araucana , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio , Fármacos Gastrointestinais/farmacologia , Jejuno , Simulação de Acoplamento Molecular , Parassimpatolíticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Coelhos , Traqueia , Úlcera/tratamento farmacológico , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico , Verapamil/farmacologia , Vômito/tratamento farmacológico
5.
Tree Physiol ; 42(10): 1957-1974, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604362

RESUMO

The study of ancient species provides valuable information concerning the evolution of specific adaptations to past and current environmental conditions. Araucaria araucana (Molina) K. Koch belongs to one of the oldest families of conifers in the world, but despite this, there are few studies focused on its physiology and responses to changes in environmental conditions. We used an integrated approach aimed at comprehensively characterizing the ecophysiology of this poorly known species, focusing in its stomatal, mesophyll and biochemical traits, hypothesizing that these traits govern the carbon assimilation of A. araucana under past and present levels of atmospheric CO2. Results indicated that A. araucana presents the typical traits of an ancient species, such as large stomata and low stomatal density, which trigger low stomatal conductance and slow stomatal responsiveness to changing environmental conditions. Interestingly, the quantitative analysis showed that photosynthetic rates were equally limited by both diffusive and biochemical components. The Rubisco catalytic properties proved to have a low Rubisco affinity for CO2 and O2, similar to other ancient species. This affinity for CO2, together with the low carboxylation turnover rate, are responsible for the low Rubisco catalytic efficiency of carboxylation. These traits could be the result of the diverse environmental selective pressures that A. araucana was exposed during its diversification. The increase in measured temperatures induced an increase in stomatal and biochemical limitations, which together with a lower Rubisco affinity for CO2 could explain the low photosynthetic capacity of A. araucana in warmer conditions.


Assuntos
Carbono , Ribulose-Bifosfato Carboxilase , Araucaria araucana , Dióxido de Carbono , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Glob Chang Biol ; 27(24): 6394-6408, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514686

RESUMO

In 2010-2018, Northern Patagonia featured the longest severe drought of the last millennium. This extreme dry spell triggered widespread growth decline and forest dieback. Nonetheless, the roles played by the two major mechanisms driving dieback, hydraulic failure and carbon starvation, are still not clear and understudied in this seasonally dry region. Here, for the 1800-2017 period, we apply a retrospective analysis of radial growth, wood anatomical traits (lumen area, cell-wall thickness) and δ13 C and δ18 O stable isotopes to assess dieback causes of the iconic conifer Araucaria araucana. We selected three stands where declining (defoliated) and nondeclining (not defoliated) trees coexisted along a precipitation gradient from the warm-dry Coastal Range to the cool-wet Andes. At all sites declining trees showed lower radial growth and lower theoretical hydraulic conductivity, suggesting a long-lasting process of hydraulic deterioration in their water transport system compared to nondeclining, coexisting trees. Wood anatomical traits evidenced that this divergence between declining and nondeclining trees started at least seven decades before canopy dieback. In the drier stands, declining trees showed higher water-use efficiency (WUE) throughout the whole period, which we attributed to early stomatal closure, suggesting a greater carbon starvation risk consistent with thinner cell walls. In the wettest stand, we found the opposite pattern. Here, a reduction in WUE coupled with thicker cell walls suggested increased carbon assimilation rates and exposure to drought-induced hydraulic failure. The δ18 O values indicated different strategies of gas exchange between sites, which are likely a consequence of microsite conditions and water sources. Multiproxy, retrospective quantifications of xylem anatomical traits and tree-ring isotopes provide a robust tool to identify and forecast, which stands or trees will show dieback or, on the contrary, which will likely withstand and be more resilient to future hotter droughts.


Assuntos
Secas , Árvores , Araucaria araucana , Isótopos , Estudos Retrospectivos , Água , Madeira
7.
Plant Physiol Biochem ; 165: 47-56, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34034160

RESUMO

Water stress triggers acclimation responses and can damage plants, which varies by species and stress levels. Ongoing climate change is projected to result in longer and more intense water stress conditions leading to an alarming increase in drought-induced forest decline. The aim of this study was to evaluate the physiological responses of leaves and stem wood anatomy from Araucaria araucana pot-grown three-year old seedlings, a conifer tree from northwestern Patagonia. Plants were subjected to moderate and severe water restriction regimes and compared to well-watered controls. Severe water stress reduced relative leaf water content and triggered an accumulation of free proline in leaves, regardless of age. Epicuticular wax extrusions increased in apical leaf stomata while photosynthetic pigments decreased, resulting in differential oxidative damage. The concentration of phenolic compounds was not affected by water restrictions. Plants exposed to restricted water regimes showed diminished middle leaf biomass and expansion (~60% of total leaves), increased stem wood density, and experienced 7% and 30% mortality rates under moderate and severe water stress, respectively. Our findings suggest that under moderate water stress, analogous to short-term droughts, A. araucana seedlings activate physiological mechanisms that allow them to withstand short periods of drought, while more severe water stress and longer droughts can be severely harmful.


Assuntos
Plântula , Água , Araucaria araucana , Secas , Fotossíntese , Folhas de Planta , Estresse Fisiológico
8.
Food Chem ; 350: 129241, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601092

RESUMO

The Araucaria araucana kernels are a traditional food in southern Chile and Argentina. The aim of this work was to determine the composition of the phenolic-enriched extracts (PEEs) of the boiled kernels as well as their antioxidant capacity, inhibitory activity on metabolic syndrome-associated enzymes and effect on postprandial oxidative stress in a simulated gastric digestion model. The PEEs composition was assessed by HPLC-DAD-MS/MS. The main PEEs constituents were catechin and epicatechin in the unbound form, while hydroxybenzoic acids occurred mainly in the bound form. The unbound phenolics from boiled kernels showed significant correlations with DPPH, FRAP, TEAC (Pearson's r of 0.481, 0.331 and 0.417, respectively) and lipid peroxidation (r = 0.381) and were more active than the bound phenolics. The extracts were highly active against α-glucosidase (IC50: 0.33-3.15 µg/mL) and reduced lipoperoxidation. Traditional processing increases the flavan-3-ol content. Our results suggest that this traditional food has potential health promoting properties.


Assuntos
Antioxidantes/farmacologia , Araucaria araucana/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Antioxidantes/química , Chile , Flavonoides/análise , Estresse Oxidativo , Espectrometria de Massas em Tandem
9.
Bioorg Chem ; 104: 104175, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920353

RESUMO

In the last decade, green chemistry has been attracting great interest in many contexts, including, among others, natural antioxidants. However, only a few works deal with natural residue extracts and biowaste, which could be an efficient, economical and environmentally friendly source for the production of useful compounds. In this study, we look for antioxidant activity in Araucaria araucana seeds, an iconic pine species of the Argentine and Chilean Patagonia commonly known as "pehuén". Piñones are the edible pehuén seeds, and it is estimated that approximately 40 tons of piñones are harvested annually in Argentina and Chile. The chemical composition, antioxidants, metal corrosion-inhibiting properties and biological activity of edible and discarded piñón tissues were determined. Acute toxicity was discarded by in vitro testing and double fluorescent staining. Biological activity was evaluated in vivo by determining redox markers in salivary glands from rats treated with Cyclophosphamide (an oncological drug). All piñón tissues had antioxidants and antioxidant activity, with the coats showing the highest levels (up to 404 µg ascorbic acid equivalent per mg). The coats, in particular, had high gallic acid, catechin, quercetin and tannin contents, and more antioxidant activity, polyphenols and flavonoids than berries from the region. Results by X-ray fluorescence spectrometry showed that Na, Mg, P, S, Cl, K, and Ca were majority elements in the coat, embryo and endosperm. Furthermore, coat extract also showed significant anti-corrosion activity and in vivo protection against oxidative damage. The results indicate that piñón biowaste is a low-cost attractive source of natural antioxidants with potential nutraceutical, medical and metal corrosion protection applications.


Assuntos
Antioxidantes/farmacologia , Araucaria araucana/química , Produtos Biológicos/farmacologia , Suplementos Nutricionais , Substâncias Protetoras/farmacologia , Sementes/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Chlorocebus aethiops , Corrosão , Relação Dose-Resposta a Droga , Masculino , Estrutura Molecular , Picratos/antagonistas & inibidores , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...